STOCHASTIC THEORY OF DIFFUSION

B. E. Vugmeister and O. A. Grechannyi UDC 530.161/162

Markov and non-Markov forms of the diffusion equations are obtained, and they are analyzed
in translationally invariant systems. The relationships between the diffusion flux and the
thermodynamic force are discussed. The inertial effects in Brownian particle diffusion and
stochastic models related to the hyperbolic diffusion equation are examined.

One of the problems of the theory of high-speed processes is the analysis of the general structure of
the transport equations and the investigation of the space —time variance of the nonequilibrium kinetic co-
efficients [1-5]. Since in the majority of cases the approximate calculation of kinetic coefficients is re-
lated to the approximation of the real transport process by a stochastic model, it is interesting to describe
high-speed transport processes directly in the terminology of stochastic representations.

The phenomenon of diffusion of nonmutually interacting particles and of self-diffusion in classical
systems is analyzed in this paper on the basis of a model description for which the particle velocity u{t) is
approximated by some random process, whose statistical properties qualitatively reflect reality. The
classical example of such an approximation is Brownian motion theory, in which u(t) is considered as a
Gaussian process. As is known, this theory describes well the situation for which a change in particle
- velocity because of interaction with the surrounding medium is sufficiently small. In the more general
case of strong changes in the velocity (linear Boltzmann systems) a jump process can be used to approxi~
mate u(t), as has been shown by Tolubinskii [6, 7].

The motion of individual particles in diverse physical systems can be described, on the average, in
the terminology of the probability P¢, r; ty, r() of a particle going from the point ry where it is at the
time t;, to the point r at the time t. In the hydrodynamic limit P satisfies the known parabolic diffusion
equation (the approximation of a random diffusion process [8]). The situation is considerably more com-
plicated for small times and high space gradients because of the influence of the detailed structure of the
particle veloeity fluctuations on its motion in coordinate space in this case, These fluctuations depend on
the nature of the forces acting on the particle and can differ substantially in different physical systems.,

The discussion of the possible forms of the equations describing diffusion for small times is indeed
the subject of this paper.

Derivation of the Fundamental Equations

The stochastic equation describing particle motion in coordinate space is

d;t(t) =u(, r(t). 1)

We assume here that the random field u is defined by its correlation functions. For each trajectory uft,
r), a probability density "not averaged" in r-space u(t, r) can be introduced, Thus, if it is assumed that
the particle is at the point rjat t = 0, and r,;{t) denotes the solution of (1) for a specific function uft, r)
with r(0) = ry, then

pit, 1) =0(r—r, 1) (2)
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The desired probability density P(t, r) is found by averaging (2) over all possible realizations u{, r)

Pt r)=<C8@—r,(6) ) =Mp(, 1), (3)
where M is the mathematical expectation operation. The continuity equation
du -
—— = —y (V- 4)
Ey v ( u

follows from the definition of u(t, r), where V = (uft, r)), v=u — V.

Since the operators M and (I — M) are orthogonal projections, we obtain in the customary projection
scheme [9]
E t
@igfl.ﬁ?.vp “&n=v- S d (vOUE £)V-vE) S PE, 1), 5)

0
where

t
Ult, t)y=Texp{—v - [IV{t)+T—Mv(&)lde | (6)
P
Within the framework of the stochastic approach assumed here, the equation obtained is exact and
valid in all physical situations in which the particle velocity can be approximated by an arbitrary random

process. Here (5) has an integrodifferential of "non-Markov" form. This is a result of the finiteness of
the velocity correlation time, which results in the process r(t) not being a Markov process.

However, a differential "Markov" form of the exact diffusion equation is possible. The effects of
remembering the process r(t) are hence reflected in the time dependence of the differential equation opera-
tor. Let us introduce the evolution operator Stt, t') of (4):

H
S{t, ¥) = Texp [—v- [V (t) - vit)ldt | . (7)
Tt follows from the definition of S(t, t') that

n@)y=S81¢, Hu (8)
from which by taking account of the identity

P()=MS (¢, )P () + (T — Mp@)] (@)
we obtain, analogously to [10],
op gt D TP 0 =GO P 1, (10)
where
Gl =<y +XOIX0), (11)
1
Xt = jU(t, ywv () MS™L(t, t')di'. 12)
0

Analysis of the Diffusion Equations in

Translationally Invariant Systems

Let v(t) be independent of r and V = const., This case can be realized in particle motion under the
effect of a constant force field in a homogeneous thermodynamically equilibrium medium, say, when the
perturbation it exerts on the spatial distribution of medium particles is negligible.

Let us examine the general structure of the diffusion equations which take account of the influence of
equilibrium particle-velocity fluctuations on its motion in coordinate space by assuming the initial velocity
distribution to be equilibrium. Since the transformation P'(¢, r) = exp (VVt) P(t, r) permits elimination of
the convective term in (5) and (10) in this case, we shall henceforth seek it by considering such a transfor-
mation carried out.

1. An expression for the diffusion flux j(, r)in the form of a convolution of the thermodynamie
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force with the operator kernel* follows from (12):
t

it H=—[a VUQ V) P (U—t, 1) ‘ (13)
0
Expanding U in a series in V and introducing the notation
d, ()= fdt1 e i§—3a'tn_2 (VYL —Mv(E)...d— MV, )V, (14)
we represent (13) as ° D
ji¢, n= i (—~ 1)”“1f d, (¢): %"“P {¢t—1, rdt, (15)
n=2 [

where the product of the vectors is understood to be a tensor, and the colon defines the convolution opera-
tion; (15) yields a dependence of the diffusion flux on the power of the density gradient which is not local
in time, The expression (13) can also be represented as

{
it n=—{ dt’j'dr’D(t’, Uy yP{{—1, r—1), (16)

0

D, )= (vU@©, Hv () ) b@); amn

where

and (16) is analogous to the main relationship in the thermodynamics of irreversible processes [12]

jlo, k) = —D" (0, k) - kP (0, k), (18)
in which, however,

DD (0, k) = (§ilt, 1)) o (19)

is a diffusion coefficient possessing a space —time variance, independent of the thermodynamic force (ikP).
The relationship (18) holds in the first order of the thermodynamic force. In this case it follows from the
exact expressicn (16) in the first order in M upon the expansion of U in (13).

An analysis of the "Markov" form of the diffusion equation (10} results in a different expansion of the
diffusion flux in a power series in the density gradient from (15). Expanding (11) in a power series in V.
and introducing the notation

t ty g
D () = (dho.. | dt,, (V@...v()de, (20)
0 0
where (v(t{)...v{ty). € are the semi-invariants of the velocity correlation functions, we obtain
i, = 2(—1)n-lpn(z):§n-1p(t, ). (21)

It must be noted that this result can also be obtained by a more direct means by expanding S(t, t') in
semi-invariants of the correlation functions v(t) analogously to [13-15}. However, the derivation of (10}
establishes a direct connection between the differential and integrodifferential forms of the diffusion equa-
tions.

However, (21), in contrast to (15), is a local form of the dependence of the flux on the powers of the
density gradients, Taking (21) into account, the "Markov" form of the diffusion equation becomes

dP (¢, 1)

= 3 (1D, ()P, ) 22)

ne=2
Hence (15) and (21) can represent the basis for an approximate analysis of fast diffusion processes at
small gradients. However, it must be kept in mind that these expansions are not equivalent, Thus, it
will be shown below that by conserving the first terms in (15) and (21), we shall arrive at distinct diffu-
sion situations.

2. The coefficients Dy and dp with odd n are zero in the absence of external fields in an isotropic

*An expression analogous to (13) has been obtained in [5,11] in the case of particle diffusion in a linear
Boltzmann system by the direct application of the projection operators method to the kinetic equation.
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medium. Inthis case, (5) and (10) describe the free relaxation of arbitrary spatially inhomogeneous den-
sity distributions.

Let us consider the approximation associated with the possibility of describing such relaxation by a
parabolic diffusion equation and the possibility of thereby approximating the motion in coordinate space by
a Markov random process. When the initial distribution P(0, r) possesses a bounded Fourier spectrum
(P(0, k)= 0 for k > kmax) it is convenient to go over to the Fourier representation and to write P, k) as

¢

P(t, k)= (exp[ik . S'v(t’) dz'] > P (0, k). (23)
0
An eifpression similar to (23) has been studied in [16], where it is shown that for t > 7, T; = (1/3)K? (VZ)TV
< 77
v
P(t, k) =P 0, Kexp(—1Ty). (24)

Hence, P satisfies the parabolic diffusion equation

0P, 1) _
o DAP (¢, 1), - (25) .

3 8

where D = (1/ (vz) ) is the diffusion coefficient, and ry, = (1/ (vz)) {v-v(t),dt. Therefore, the parabolic

equation (25) is applicable to the description of the relaxation of sliéhtly inhomogeneous density perturba-

tions k%nax « 3/(v2) Ty at the time of large times and velocity correlations 7.

To investigate the domain of applicability of (25) in the more general case of strongly localized per-
turbations [when P, r) contains a Fourier component and with large k], let us examine the approximation
associated with the derivation of (25) from the exact equation (22) for P(0, r) = 6(r). Let us represent the
formal solution of (22) as

P, 1) = exp [i {dr, (t'):%?n} PO 1), (26)
where e g
t
PO (t, 1) = exp| j di'Dy(t") :{?2] 3(r) @)
0

which is a solution of (25) for t »> ry. Expanding the exponential operator in (26) in a power series in the
gradients, taking account of their effect on PO for t >» Ty, and estimating the generator terms by assum-
ing that Dyp (<) € ((vz)/s)nri,n‘1 [14,16], we obtain P¢, r) = PO, r) for t » ryand r? < Dt. These condi-
tions indeed establish the domain of applicability of (25) in the case of localized density perturbations.
However, it must be noted that the estimates presented for Dy () are not valid when v{t) can be approxi-
mated in the asymptotic by a 6-correlated process of the pulse noise type which results in a generalized
Poisson process rt).*

Let us consider a quantity characterizing the perturbation-propagation velocity

_ 4 vaEas
C(t)—dtVU(f))-

t

It is known that ct) — « follows from (25) as t — 0. From the exact equations (r*t)) = 26 : \ D, (t')dt

_ (Vz) tast—0 and, therefore c(t) — ‘[(Vz)' |

3. Keeping only the first member in the expansion (21) of the diffusion flux, we obtain
dP(t, 1)
ot
This approximation corresponds to the approximation of the particle velocity by a Gaussian random process

for which Dp(t) = 0 for n > 2 according to (20). Such an approximation is possible for the description of
Brownian motion.

=D,(®): VPt 1). (28)

The generalized Langevin equation [17]

*For example, a jump self-diffusion mechanism.
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= —jg(t—t')-v(t’)dt’+F(t). : T 29

0

av(y
dt

can be used to examine the diffusion of Brownian particles in a fluid subjected to hydrodynamic fluctua-
tions. The expression for the attentuation matrix follows from the fluctuation— dissipation relationship

(FOF @)Y =) -9t —£). (30)

If Ft) is assumed a Gaussian process, then it follows from (29) that v(t) is also a random Gaussian
process, and (28) is valid in this case. Let us present the result of calculation Dy {) for an isotropic
" model by setting (F&)F¢')) = (v /3)6¢,exp (—t/7¢), i.e., by considering the process F(t) a Markov pro-
cess

I

2 a2
[QVeW — opchut — 2TV shyt }, (81
: %

2 —pt
D, (=85 . =2

P2 — 22

where v =1/275, n=/y?— ¢, For 1, 0, ¢y —~ %, Ty =Ty = const, which corresponds to approxima-
ting F(t) by a 6-correlated process, the known expression obtained in the investigation of the influence of
inertial effects on Brownian diffusion [18,19]

()

T - e (32)

D,() =5

follows from (31). Fort > 7yDst) = grv((v2)‘/3) and (28) goes over into the Kramers — Smoluchowsky
equation, Therefore, the conditions for applicability of the asymptotic diffusion equation in the Brownian
motion case donotconstrainthe analysis to small volumes of coordinate space. Let us note that all the
coefficients dy, in the "non-Markov" representation of (28) are not zero.

4. Now, let us examine the opposite physical situation which results indyp = 0 for n > 2 in a "non~
Markov" form of the diffusion equation. In the one-dimensional case this situation is realized by approxi-
mating v(t} by a Markov random process with two states, —v and v. We see by direct substitution that only

the first member is hence retained in (15), and
t

i, x):——v“j‘e

0

e, OPA—t, %) (33)
Ox

In this case the equation for P(t, x) is a hyperbolic diffusion equation. The three~dimensional model re-
sulting in the generalization of (33) is related to a Markov jump process v(t) whose distribution satisfies a
linear equation of Boltzmann type with a transition probability density per unit time of the form
1
T, U*

W, v)=

(v —v") % 2 8(n—n,), (34)

where n is the unit vector in the direction v, n; — are the eight directions from the center of a cube to
its vertices. This model describes particle motion with a constant velocity and anisotropic dissipation
with equal probability in the eight directions n;. Using the Markov property of this process, the particle-
velocity correlation functions and the coefficients dp(t) can be calculated. The diffusion equation hence
obtained is not invariant relative to rotations of the coordinate system, which is a result of anisotropy of
the dissipation. Ina coordinate system whose axes are parallel to the edges of the cube related to the di-
rections nj, dy(t) = 6(v2/3)e't/TV, dyt) = 0 for n > 2, Hence, in this coordinate system the three~dimen~
sional equation -

TDW "7'7 :'E—rvAP (35)
is valid. Under appropriate initial conditions, (35) describes free particle motion at the velocity v/ /3
along each of the three isolated space directions at the times t < ry. Hence, P(x;) = (1/2){6 x5 — vi/V 3}
+ 6 (x4 + vt/ V/3)]. At the same time, spherically symmetrical solutions of the wave equation do not de-
scribe free motion, and, therefore, (35) cannot be related to the model of motion with a constant velocity
for t < 7y and in the presence of spherical symmetry. The stochastic model of motion with a constant
velocity, which admits of the spherically symmetric distribution r(t), is described by a single~velgeity
transport equation with isotropic scattering [20] and results in the following form of the coefficient dn@):
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2, .
Ay () =—T g TIn(( — T aPRn,  dy,,; =0,
" @n — 2

where IIf(n) = (1/47) S def(n). Taking account of just d,() results in an equation of type (35) invariant

relative to rotations; however, there is no foundation for neglecting the remaining coefficients for t < ry
in this case.
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